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Abstract 
A major issue of process state capture in high-

performance heterogeneous computing systems is capture 
initiation. Current approaches incur significant 
performance overhead during normal execution of the 
process (i.e., when state capture/recovery is not being 
performed) in order to ensure the initiation of capture at 
the next encountered point of equivalence*. This is because 
of their introduction of instructions into the user-code, 
either to poll for a capture request, or to ensure 
correctness of self-modifying code in the case of a poll-free 
mechanism. In this paper, we propose a fundamentally new 
approach to heterogeneous process state capture and 
recovery that achieves minimum performance overhead 
during normal execution by obviating the introduction of 
such instructions. Particularly, in high-performance 
computing applications, the performance gain thus 
achieved – especially within critical loops – would be 
significant. Also, our solution is capable of effectively 
enabling all potential points of equivalence present in a 
computation if minimal latency is desired. 
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1. Introduction 

The days of supercomputers and mainframes 
dominating computing are over [1]. Recent developments 
in software systems and the growing availability of higher-
performance computing and networking hardware have 
made commonplace the use of networks of workstations, 
personal computers, and supercomputers as virtual, 
distributed-memory parallel machines, or metasystems, for 
solving computationally demanding problems [2]. Some 
level of heterogeneity is really the norm in such systems. 
The presence of heterogeneous architectural platforms 
within a high-performance distributed metasystem gives 
rise to a number of problems not present in homogenous 
distributed computing systems. The complexity of varying 
architectural features such as data representation and 
instruction sets must be masked from the application 
programmer.  

 
Despite the added complexity and challenges involved 

in heterogeneous distributed computing, the promise of 
increased performance afforded by a larger hardware base, 
along with the ability to further improve performance by 
mapping sub-tasks of a computation to the most 

appropriate available hardware makes heterogeneous 
computing a promising area of research. 

 
A substantial body of research demonstrates the utility 

and desirability of such a mechanism. For example, process 
migration policies supporting load sharing and/or fault 
tolerance can be based on a process state capture facility 
(e.g. Condor [3]). Also, one common method of providing 
reliability for applications is to provide checkpoint and 
restart functionality. If application state is stored 
periodically (checkpointed), when some component of the 
system is lost (due either to failure or to load-balancing 
requirements) an application can use recently saved 
computational state to restart without having to regress too  
far in the computation. Providing fault-tolerance for 
applications in these systems will be greatly simplified by 
checkpoint/restart functionality. 

 
Beyond these existing uses for process state capture 

and recovery, the availability of such a mechanism in the 
metasystem context also opens up new possibilities such as 
improved resource management, platform-independent 
debugging using checkpoints and message logs to replay a 
process from a given point in execution, or statically 
examining the state of a process as captured in a checkpoint 
[4]. The increasing importance of the use of process state 
capture and recovery has made the design of such a 
mechanism a key research issue in high-performance 
heterogeneous computing. 
 
2.   The Heterogeneous Process State Capture 

Problem 
A mechanism solving the heterogeneous process state 

capture and recovery problem must provide the ability to 
generate a checkpoint for an active process – a complete 
description of that process’s state and point in execution – 
and also support the later use of that checkpoint to restart a 
process with equivalent state and at an equivalent point in 
execution, possibly on a different platform from the one on 
which the original checkpoint was created [2].  

 
A major issue of process state capture in 

heterogeneous computing systems is its initiation, once the 
request has been received. The process cannot simply be 
paused (for capturing its state) at any point of its execution, 
but can only be paused at points which have equivalent 
points in all the instances of the same computation on 
different platforms [5].  

 

* a point having equivalents in all instances of the computation on different architectures 
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There are many possible points of execution 
equivalence that can be identified in any program. But, not 
all of these candidates would be effectively enforced as 
actual points of execution equivalence. This is because, in 
order to ensure consistency, machine-dependent optimiza-
tions would need to be disabled across such enabled points  
of equivalence, which results in performance degradation.  
The selection of the subset of points of equivalence to be  
enabled is based on a trade-off between the performance 
overhead incurred during normal execution and the wait-
time from request to actual initiation of the capture. 

 
Also, the possibility of cross-platform recovery leads 

to the most fundamental solution constraint: the mechanism 
should capture the state in a platform-independent manner 
– i.e., checkpoints produced on a computer system of any 
architecture should be recoverable on a system of any other 
architecture [6]. For example, one straightforward approach 
is to use an interpreted language. In these designs, the 
interpreter acts as a virtual machine that can artificially 
homogenize a system composed of heterogeneous 
elements. Unfortunately, such schemes severely compr-
omise performance since they run at least an order of 
magnitude slower than their native code counterparts. 
Therefore, in our intended environment, processes run on 
nodes, typically executing in native code form due to 
performance considerations. 

 
In homogeneous systems, process state capture and 

recovery mechanisms can simply and directly copy the 
state of a process verbatim, without semantic analysis and 
interpretation of that state. Unfortunately, in a 
heterogeneous environment, the state of a process cannot 
be captured using this naï ve approach because of 
differences in instruction sets and data representation. To 
mask the varying features of a process’s environment in a 
heterogeneous system, a state capture mechanism must 
examine and capture the logical internal structure and 
meaning of the process state – i.e., the logical point in 
execution, the call stack (or call stacks, if threads are 
supported), complex data structures, the logical structure 
and contents of heap allocated memory, and all other 
process state must be analyzed and captured in a platform-
independent format. 

 
3. Related Work 

Although process state capture/recovery mechanisms 
for homogeneous computing systems are well-developed 
and can now typically be performed with minimal overhead 
and latency, much less progress has been made towards 
providing such a functionality across heterogeneous 
architectures. Because of the additional inherent 
complexity introduced by heterogeneity, very few designs 
for such a facility have been developed to date. 

 
The Tui system [7] has been constructed to provide a 

heterogeneous migration tool for use on four common 
architectures within the Unix environment. In this system, 

the capture (and recovery) of the activation history state of 
a process is performed in a highly machine dependent 
manner, with full knowledge of the particular idiosyncratic 
conventions followed on each of the target platforms. Also, 
when a process state capture is requested, a breakpoint 
instruction to trap to the capture mechanism is placed at all 
“pre-emption points” (the enabled points of equivalence) 
available in the program to effect capture initiation. In such 
approaches, on architectures with varying instruction 
lengths, it is possible that the breakpoint instruction placed 
at one pre-emption point overwrites the instruction placed 
at another point or the current instruction (pointed to by the 
program counter). To avoid this loss of correctness, space 
has to be padded at each pre-emption point, enough to 
accommodate the breakpoint instruction. This can typically 
be done by placing dummy instructions, which introduce 
performance overhead during normal execution of the 
program. 

 
The process introspection model proposed by Ferrari 

[4] and the portable (or shadow-) checkpointing model 
presented in [11,12] perform the capture of the activation 
history state in an entirely machine-independent manner, 
using the call-return semantics provided by the high-level 
programming language or by the intermediate instruction 
set. Here, the architectural differences will be taken care of 
by the compiler. They follow a polling approach to initiate 
the process state capture. Poll points are introduced into the 
execution where the process determines if a capture should 
be initiated. In such an approach, a substantial amount of 
performance overhead would be incurred during normal 
execution due to continuous polling. 

 
Thus, it can be seen that the existing approaches have 

not been successful in achieving the minimal performance 
overhead during normal execution. The overhead incurred 
in such approaches would be significant enough to deter 
their utilizaion for high-performance computing 
applications. 

 
In applications such as process migration due to load-

balancing policies, or logging mechanisms for fault tolerant 
systems, arbitrarily long latencies would not be acceptable. 
In the case of load balancing, for example, the very purpose 
of migrating the process itself is to reduce the load on the 
system as soon as possible. For such applications with a 
minimal latency requirement, all potential points of 
equivalence present in a computation must be effectively 
enabled. A polling approach would not be suitable because 
the performance overhead due to persistent polling at all 
such points would reach severely unacceptable levels. 

 
4. Design 

We now describe our solution to the heterogeneous 
process state capture / recovery problem, that is especially 
suited to high-performance computing scenarios. 
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4.1. Objectives 
a. Efficiency: As a goal, in addition to providing efficient 
state capture and recovery, the mechanism should introduce 
acceptable run-time performance overhead. In particular, if 
checkpoints are not performed during a certain period of 
execution, a process with state capture and recovery service 
available to it should not run significantly slower than the 
version of the code without this service available over the 
same period. 
 
b. Generality: The mechanism should be appropriate for 
use with a wide range of architectures and a wide variety of 
programs that are written in a variety of languages, and that 
solve a wide range of problems. 
 
c. Suitability for Minimal Latency: The state capture 
mechanism should be capable of ensuring minimum 
possible latency (the time delay between when a capture is 
scheduled or requested and when the capture is actually 
initiated) which is the time taken to reach the very next 
possible point of equivalence in the computation.  
  
4.2. Solution Overview 

As described in Section 3 (Related Work), current 
approaches to the heterogeneous process state capture 
problem incur significant performance overhead during 
normal execution of the process. However, it is desirable 
that the performance during normal execution should not 
be degraded.  

 
We propose a poll-free solution that involves 

semantics-preserving self-modification of code. However, 
unlike the current poll-free solutions (eg. Tui system), we 
do not place capture initiation instruction at all enabled 
points of equivalence. However, because the point to be 
encountered next is not known a priori: 
i) In the presence of a control-flow instruction, the 

process is made to execute up to the point where the 
control is to be transferred. Instead of actually 
transferring control, the destination is noted and the 
capture is initiated as if from that point or its 
sequentially next enabled point of equivalence.  

ii) Else, the initiation instruction is placed at the 
sequentially next enabled point of equivalence. 
 
Our solution achieves the minimum possible 

performance overhead during normal execution of the 
process. The overhead incurred is now limited to:  
• The performance enhancements lost because of 

disallowing machine-dependent optimizations across 
enabled points of equivalence. 

• The run-time support required for the registration of 
dynamic data (as will be explained in Section 4.5). 
 
The selection of the enabled subset from the entire set 

of potential points of equivalence shall be done according 
to the application-specific requirements and constraints. 
For example, 

i) An application desiring minimal latency may effectively 
enable all potential points of equivalence present in a 
computation – something that could not be done by a 
polling approach, because of the exorbitant performance 
overhead incurred during normal execution.  

ii)  In the case of high-performance computing applications, 
only a subset of the potential points of equivalence 
would have to be enabled in order to exploit the 
performance enhancements achieved – especially within 
critical loops – through machine-dependent optimizat-
ions across the non-enabled, but potential, points of 
equivalence. 

 
One of the major aspects of our design is the 

modification of a program to incorporate state capture and 
recovery functionality, giving processes the ability to 
autonomously save and restore their states, once initiated. 
We assume that the process is based on a program that is 
either written in or has been translated to an imperative, 
stack-based intermediate representation to which our 
transformations will be applied – likely by a compiler, but 
also possibly by a programmer. 

 
The key element of our design is a table which maps 

all the enabled points of equivalence to the corresponding 
points in object code for each target architecture, obtained 
using compiler-support. This table is primarily used to 
capture – in a machine-independent manner – the current 
execution point of the process and all the points where 
execution was frozen due to function activations. These 
points are then mapped onto their corresponding points in 
the destination architecture’s object code during recovery.  

 
Certain parts of the process state are easily captured – 

for example, any global variable or heap allocated data 
structures, being globally addressable, are easy to capture 
and recover. The key difficulty in capturing the process 
state is the capture of the activation history state. In our 
approach, the process utilizes the native “function return” 
mechanism provided by the intermediate instruction set to 
capture the stack state. The currently active function saves 
its own state (which only it can access) and returns to its 
caller, which in turn saves its own state, and so on, until the 
stack capture is complete. Similarly, to effect recovery, the 
process employs the native “function call” mechanism 
provided by the intermediate instruction set. During 
recovery, the base function restores its state, and then calls 
the next function in the captured stack, which repeats this 
process until the stack is completely restored. To preserve 
program correctness (so that the function call sequence 
repeated during recovery does not produce any side-
effects), the given program shall be transformed such that 
all function calls appear only in simple expression 
statements, which are side effect free.  

 
The activation history capture/recovery mechanism 

described above is accomplished by adding epilogues in 
each function (at points which are non-reachable during 
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normal execution but are reached only during capture / 
recovery), for both saving and restoring the activation state.  
 
4.3. Assumptions 
a. Compiler support is available for obtaining the 

equivalence point table. 
b. Operating system support is available for obtaining the 

current value of the program counter for a process. 
c. Machine dependent optimizations across enabled 

points of equivalence shall not be allowed since they 
may prevent the different compiled versions of the 
program across heterogeneous platforms from hitting 
every such point consistently. 

 
4.4. State Capture Initiation Algorithm 

When a request for capture of a process’s state is 
received from an external agent, the following steps are 
carried out: 
a. The current value of the program counter is obtained 

using operating system support. 
b. The program counter value is used to identify the 

currently executing function and the current block (the 
segment of code between two points of equivalence 
containing the current instruction).  

c. The following steps are carried out for ensuring that 
the state capture is initiated on encountering the next 
point of equivalence: 
i. If the program counter is exactly at a point of 

equivalence, an instruction to initiate state capture 
is placed at the same point. 

ii. For each program control instruction that lies 
between the current point of execution and the 
sequentially next point of equivalence:  
• Code is placed in place of the program control 

instruction to ensure that the point of 
equivalence that would have been encountered 
next, if the program control instruction were 
allowed to execute, is registered.  

• An instruction to initiate state capture is then 
placed at the end of that code.  

Most importantly, the program control instruction 
is not allowed to actually execute – the steps that 
it would have carried out if it would have 
executed (for example, setting up a new activation 
record in the case of a procedure call instruction), 
will be made to be carried out, except for passing 
control to some point, instead of which the control 
is passed to the state capture mechanism. 

iii. If no program control instruction lies between the 
current point of execution and the sequentially 
next point of equivalence, an instruction to initiate 
state capture is placed at the sequentially next 
point of equivalence.  

The process is now “informed” to initiate the state capture 
as soon as possible. Once the process starts executing later, 
it eventually encounters a point of equivalence. Here, the 
initiation instruction (which is a call to the state capture 

mechanism) gets executed and the control is thus 
transferred to the state capture mechanism. 
 

This algorithm requires that all points in the code 
which are possible destinations of jump instructions should 
be enabled as points of equivalence. This is not a restrictive 
requirement, as optimizations would anyway not be 
performed across jump destinations to preserve program 
correctness. 
 
4.5. State Capture Algorithm 
a. Once the control is transferred to the state capture 

mechanism function, the following tasks are performed 
initially: 
1. The point of equivalence at which (and the 

interrupted function within which) capture has 
been initiated is noted.  

2. The return address of the current activation record is 
replaced by the address of the saving epilogue of 
the interrupted function. Finally, a return is 
performed so that control is passed to that saving 
epilogue. 

b. The saving epilogue performs the following tasks: 
1. Save the local variables, actual parameters present 

in the current activation record. 
2. Identify the caller of the current function using the 

return address available in the current activation 
record. The point of equivalence preceding the 
point of execution of the calling function is noted. 

3. The return address of the current activation record is 
replaced by the address of the saving epilogue of 
the caller function. Next, a return is performed so 
that control is passed to the caller’s saving 
epilogue. 

c. Step b is repeated until all activations are saved.  
d. When the bottom of the activation history stack is 

reached, the epilogue also performs the saving of the 
static (global) data and the heap data. 
 
While saving the activation, static or heap data, the 

state of a pointer is captured according to its logical 
meaning (i.e., the data object or code point to which it is 
pointing) rather than its value indicating the physical 
address [8, 9, 10]. In order to identify the data object being 
pointed, given a physical address, we require one of the 
following: 
i. Compiler-support in terms of information about the 

positions of globals within the global data area and the 
activation record structures of the various functions, as 
well as run-time support only for registering heap data. 

ii. Run-time support for registering local, global and heap 
data. 

For all other data types, the data is copied verbatim into the 
checkpoint.  
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4.6 State Recovery Algorithm 
Once a new process has been created on the 

destination machine, the following steps are carried out to 
perform the process state recovery: 
a. A jump instruction with destination as the corresp-

onding restoring epilogue is placed at the entry point 
of each function present in the program. 

b. When the first activation record (for the base function) 
is created, the corresponding epilogue will restore the 
static (global) and heap data from the checkpoint file. 

c. The restoring epilogue performs the following tasks:  
1. Restore the local variables and actual parameters 

into the current activation record.  
2.  If there are no more activations to be restored: 

The original entry point of each function is 
restored back. 

3.  A jump takes place to the point in the destination’s 
object code corresponding to the point of 
equivalence (at which this function activation’s 
execution was frozen) noted during state capture. 

d. Step c is repeated until all activations have been 
restored. This happens automatically since the point to 
which the jump takes place will contain a call 
instruction until all the activation records have been 
restored. (Once all the activations have been restored, 
the original function entry points are restored and 
control is transferred to the point of equivalence at 
which the state capture had been initiated).  

e. The process finally resumes normal execution. 
 

Again, while restoring the activation, static or heap 
data, the state of a pointer is mapped back from its logical 
meaning to its value indicating the physical address on this 
machine. For all other data types, the source data copied 
into the checkpoint is now translated accordingly into the 
destination architecture data format by using data format 
mapping functions, if necessary. This is in accordance with 
the “receiver makes right” policy. This policy has the 
advantage that only one translation needs to be done (by 
the receiver) and there is no need for any intermediate data 
format representation. Also, if the state is to be recovered 
on the same architecture as the source, there is no need for 
any translation at all. 

 
5. Conclusion 

This paper presents an approach to process state 
capture and recovery in heterogeneous computing systems 
that achieves minimum performance overhead during 
normal execution of the process. The overhead incurred is 
limited to the performance enhancements lost because of 
disallowing machine-dependent optimizations across 
enabled points of equivalence, and the run-time support 
required for the registration of dynamic data. 

 
The solution presented, being poll-free, is suitable 

even for an application desiring minimal latency as it can 
afford to effectively enable all potential points of 
equivalence present in a computation. Also, high-

performance computing applications can perform 
significantly better due to the reduced performance 
overhead, especially within critical loops. 
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