
1

A MINIMAL-OVERHEAD APPROACH TO HETEROGENEOUS
PROCESS STATE CAPTURE AND RECOVERY

Prashanth. P. Bungale and Swaroop Sridhar
Department of Computer Science & Engg.

The National Institute of Engineering
Mysore, INDIA

E-mail: { pbungale, swaroop } @ ieee.org

Vinay Krishnamurthy
Department of Computer Science & Engg.

Vidyavardhaka College of Engineering
Mysore, INDIA

E-mail: vinay_krishnamurthy@rediffmail.com

Abstract
A major issue of process state capture in high-

performance heterogeneous computing systems is capture
initiation. Current approaches incur significant
performance overhead during normal execution of the
process (i.e., when state capture/recovery is not being
performed) in order to ensure the initiation of capture at
the next encountered point of equivalence*. This is because
of their introduction of instructions into the user-code,
either to poll for a capture request, or to ensure
correctness of self-modifying code in the case of a poll-free
mechanism. In this paper, we propose a fundamentally new
approach to heterogeneous process state capture and
recovery that achieves minimum performance overhead
during normal execution by obviating the introduction of
such instructions. Particularly, in high-performance
computing applications, the performance gain thus
achieved – especially within critical loops – would be
significant. Also, our solution is capable of effectively
enabling all potential points of equivalence present in a
computation if minimal latency is desired.

Keywords: Process state capture and recovery, Process state

capture initiation, High-Performance heterogeneous
computing

1. Introduction

The days of supercomputers and mainframes
dominating computing are over [1]. Recent developments
in software systems and the growing availability of higher-
performance computing and networking hardware have
made commonplace the use of networks of workstations,
personal computers, and supercomputers as virtual,
distributed-memory parallel machines, or metasystems, for
solving computationally demanding problems [2]. Some
level of heterogeneity is really the norm in such systems.
The presence of heterogeneous architectural platforms
within a high-performance distributed metasystem gives
rise to a number of problems not present in homogenous
distributed computing systems. The complexity of varying
architectural features such as data representation and
instruction sets must be masked from the application
programmer.

Despite the added complexity and challenges involved

in heterogeneous distributed computing, the promise of
increased performance afforded by a larger hardware base,
along with the ability to further improve performance by
mapping sub-tasks of a computation to the most

appropriate available hardware makes heterogeneous
computing a promising area of research.

A substantial body of research demonstrates the utility

and desirability of such a mechanism. For example, process
migration policies supporting load sharing and/or fault
tolerance can be based on a process state capture facility
(e.g. Condor [3]). Also, one common method of providing
reliability for applications is to provide checkpoint and
restart functionality. If application state is stored
periodically (checkpointed), when some component of the
system is lost (due either to failure or to load-balancing
requirements) an application can use recently saved
computational state to restart without having to regress too
far in the computation. Providing fault-tolerance for
applications in these systems will be greatly simplified by
checkpoint/restart functionality.

Beyond these existing uses for process state capture

and recovery, the availability of such a mechanism in the
metasystem context also opens up new possibilities such as
improved resource management, platform-independent
debugging using checkpoints and message logs to replay a
process from a given point in execution, or statically
examining the state of a process as captured in a checkpoint
[4]. The increasing importance of the use of process state
capture and recovery has made the design of such a
mechanism a key research issue in high-performance
heterogeneous computing.

2. The Heterogeneous Process State Capture

Problem
A mechanism solving the heterogeneous process state

capture and recovery problem must provide the ability to
generate a checkpoint for an active process – a complete
description of that process’s state and point in execution –
and also support the later use of that checkpoint to restart a
process with equivalent state and at an equivalent point in
execution, possibly on a different platform from the one on
which the original checkpoint was created [2].

A major issue of process state capture in

heterogeneous computing systems is its initiation, once the
request has been received. The process cannot simply be
paused (for capturing its state) at any point of its execution,
but can only be paused at points which have equivalent
points in all the instances of the same computation on
different platforms [5].

* a point having equivalents in all instances of the computation on different architectures

2

There are many possible points of execution
equivalence that can be identified in any program. But, not
all of these candidates would be effectively enforced as
actual points of execution equivalence. This is because, in
order to ensure consistency, machine-dependent optimiza-
tions would need to be disabled across such enabled points
of equivalence, which results in performance degradation.
The selection of the subset of points of equivalence to be
enabled is based on a trade-off between the performance
overhead incurred during normal execution and the wait-
time from request to actual initiation of the capture.

Also, the possibility of cross-platform recovery leads

to the most fundamental solution constraint: the mechanism
should capture the state in a platform-independent manner
– i.e., checkpoints produced on a computer system of any
architecture should be recoverable on a system of any other
architecture [6]. For example, one straightforward approach
is to use an interpreted language. In these designs, the
interpreter acts as a virtual machine that can artificially
homogenize a system composed of heterogeneous
elements. Unfortunately, such schemes severely compr-
omise performance since they run at least an order of
magnitude slower than their native code counterparts.
Therefore, in our intended environment, processes run on
nodes, typically executing in native code form due to
performance considerations.

In homogeneous systems, process state capture and

recovery mechanisms can simply and directly copy the
state of a process verbatim, without semantic analysis and
interpretation of that state. Unfortunately, in a
heterogeneous environment, the state of a process cannot
be captured using this naï ve approach because of
differences in instruction sets and data representation. To
mask the varying features of a process’s environment in a
heterogeneous system, a state capture mechanism must
examine and capture the logical internal structure and
meaning of the process state – i.e., the logical point in
execution, the call stack (or call stacks, if threads are
supported), complex data structures, the logical structure
and contents of heap allocated memory, and all other
process state must be analyzed and captured in a platform-
independent format.

3. Related Work

Although process state capture/recovery mechanisms
for homogeneous computing systems are well-developed
and can now typically be performed with minimal overhead
and latency, much less progress has been made towards
providing such a functionality across heterogeneous
architectures. Because of the additional inherent
complexity introduced by heterogeneity, very few designs
for such a facility have been developed to date.

The Tui system [7] has been constructed to provide a

heterogeneous migration tool for use on four common
architectures within the Unix environment. In this system,

the capture (and recovery) of the activation history state of
a process is performed in a highly machine dependent
manner, with full knowledge of the particular idiosyncratic
conventions followed on each of the target platforms. Also,
when a process state capture is requested, a breakpoint
instruction to trap to the capture mechanism is placed at all
“pre-emption points” (the enabled points of equivalence)
available in the program to effect capture initiation. In such
approaches, on architectures with varying instruction
lengths, it is possible that the breakpoint instruction placed
at one pre-emption point overwrites the instruction placed
at another point or the current instruction (pointed to by the
program counter). To avoid this loss of correctness, space
has to be padded at each pre-emption point, enough to
accommodate the breakpoint instruction. This can typically
be done by placing dummy instructions, which introduce
performance overhead during normal execution of the
program.

The process introspection model proposed by Ferrari

[4] and the portable (or shadow-) checkpointing model
presented in [11,12] perform the capture of the activation
history state in an entirely machine-independent manner,
using the call-return semantics provided by the high-level
programming language or by the intermediate instruction
set. Here, the architectural differences will be taken care of
by the compiler. They follow a polling approach to initiate
the process state capture. Poll points are introduced into the
execution where the process determines if a capture should
be initiated. In such an approach, a substantial amount of
performance overhead would be incurred during normal
execution due to continuous polling.

Thus, it can be seen that the existing approaches have

not been successful in achieving the minimal performance
overhead during normal execution. The overhead incurred
in such approaches would be significant enough to deter
their utilizaion for high-performance computing
applications.

In applications such as process migration due to load-

balancing policies, or logging mechanisms for fault tolerant
systems, arbitrarily long latencies would not be acceptable.
In the case of load balancing, for example, the very purpose
of migrating the process itself is to reduce the load on the
system as soon as possible. For such applications with a
minimal latency requirement, all potential points of
equivalence present in a computation must be effectively
enabled. A polling approach would not be suitable because
the performance overhead due to persistent polling at all
such points would reach severely unacceptable levels.

4. Design

We now describe our solution to the heterogeneous
process state capture / recovery problem, that is especially
suited to high-performance computing scenarios.

3

4.1. Objectives
a. Efficiency: As a goal, in addition to providing efficient
state capture and recovery, the mechanism should introduce
acceptable run-time performance overhead. In particular, if
checkpoints are not performed during a certain period of
execution, a process with state capture and recovery service
available to it should not run significantly slower than the
version of the code without this service available over the
same period.

b. Generality: The mechanism should be appropriate for
use with a wide range of architectures and a wide variety of
programs that are written in a variety of languages, and that
solve a wide range of problems.

c. Suitability for Minimal Latency: The state capture
mechanism should be capable of ensuring minimum
possible latency (the time delay between when a capture is
scheduled or requested and when the capture is actually
initiated) which is the time taken to reach the very next
possible point of equivalence in the computation.

4.2. Solution Overview

As described in Section 3 (Related Work), current
approaches to the heterogeneous process state capture
problem incur significant performance overhead during
normal execution of the process. However, it is desirable
that the performance during normal execution should not
be degraded.

We propose a poll-free solution that involves

semantics-preserving self-modification of code. However,
unlike the current poll-free solutions (eg. Tui system), we
do not place capture initiation instruction at all enabled
points of equivalence. However, because the point to be
encountered next is not known a priori:
i) In the presence of a control-flow instruction, the

process is made to execute up to the point where the
control is to be transferred. Instead of actually
transferring control, the destination is noted and the
capture is initiated as if from that point or its
sequentially next enabled point of equivalence.

ii) Else, the initiation instruction is placed at the
sequentially next enabled point of equivalence.

Our solution achieves the minimum possible

performance overhead during normal execution of the
process. The overhead incurred is now limited to:
• The performance enhancements lost because of

disallowing machine-dependent optimizations across
enabled points of equivalence.

• The run-time support required for the registration of
dynamic data (as will be explained in Section 4.5).

The selection of the enabled subset from the entire set

of potential points of equivalence shall be done according
to the application-specific requirements and constraints.
For example,

i) An application desiring minimal latency may effectively
enable all potential points of equivalence present in a
computation – something that could not be done by a
polling approach, because of the exorbitant performance
overhead incurred during normal execution.

ii) In the case of high-performance computing applications,
only a subset of the potential points of equivalence
would have to be enabled in order to exploit the
performance enhancements achieved – especially within
critical loops – through machine-dependent optimizat-
ions across the non-enabled, but potential, points of
equivalence.

One of the major aspects of our design is the

modification of a program to incorporate state capture and
recovery functionality, giving processes the ability to
autonomously save and restore their states, once initiated.
We assume that the process is based on a program that is
either written in or has been translated to an imperative,
stack-based intermediate representation to which our
transformations will be applied – likely by a compiler, but
also possibly by a programmer.

The key element of our design is a table which maps

all the enabled points of equivalence to the corresponding
points in object code for each target architecture, obtained
using compiler-support. This table is primarily used to
capture – in a machine-independent manner – the current
execution point of the process and all the points where
execution was frozen due to function activations. These
points are then mapped onto their corresponding points in
the destination architecture’s object code during recovery.

Certain parts of the process state are easily captured –

for example, any global variable or heap allocated data
structures, being globally addressable, are easy to capture
and recover. The key difficulty in capturing the process
state is the capture of the activation history state. In our
approach, the process utilizes the native “function return”
mechanism provided by the intermediate instruction set to
capture the stack state. The currently active function saves
its own state (which only it can access) and returns to its
caller, which in turn saves its own state, and so on, until the
stack capture is complete. Similarly, to effect recovery, the
process employs the native “function call” mechanism
provided by the intermediate instruction set. During
recovery, the base function restores its state, and then calls
the next function in the captured stack, which repeats this
process until the stack is completely restored. To preserve
program correctness (so that the function call sequence
repeated during recovery does not produce any side-
effects), the given program shall be transformed such that
all function calls appear only in simple expression
statements, which are side effect free.

The activation history capture/recovery mechanism

described above is accomplished by adding epilogues in
each function (at points which are non-reachable during

4

normal execution but are reached only during capture /
recovery), for both saving and restoring the activation state.

4.3. Assumptions
a. Compiler support is available for obtaining the

equivalence point table.
b. Operating system support is available for obtaining the

current value of the program counter for a process.
c. Machine dependent optimizations across enabled

points of equivalence shall not be allowed since they
may prevent the different compiled versions of the
program across heterogeneous platforms from hitting
every such point consistently.

4.4. State Capture Initiation Algorithm

When a request for capture of a process’s state is
received from an external agent, the following steps are
carried out:
a. The current value of the program counter is obtained

using operating system support.
b. The program counter value is used to identify the

currently executing function and the current block (the
segment of code between two points of equivalence
containing the current instruction).

c. The following steps are carried out for ensuring that
the state capture is initiated on encountering the next
point of equivalence:
i. If the program counter is exactly at a point of

equivalence, an instruction to initiate state capture
is placed at the same point.

ii. For each program control instruction that lies
between the current point of execution and the
sequentially next point of equivalence:
• Code is placed in place of the program control

instruction to ensure that the point of
equivalence that would have been encountered
next, if the program control instruction were
allowed to execute, is registered.

• An instruction to initiate state capture is then
placed at the end of that code.

Most importantly, the program control instruction
is not allowed to actually execute – the steps that
it would have carried out if it would have
executed (for example, setting up a new activation
record in the case of a procedure call instruction),
will be made to be carried out, except for passing
control to some point, instead of which the control
is passed to the state capture mechanism.

iii. If no program control instruction lies between the
current point of execution and the sequentially
next point of equivalence, an instruction to initiate
state capture is placed at the sequentially next
point of equivalence.

The process is now “informed” to initiate the state capture
as soon as possible. Once the process starts executing later,
it eventually encounters a point of equivalence. Here, the
initiation instruction (which is a call to the state capture

mechanism) gets executed and the control is thus
transferred to the state capture mechanism.

This algorithm requires that all points in the code
which are possible destinations of jump instructions should
be enabled as points of equivalence. This is not a restrictive
requirement, as optimizations would anyway not be
performed across jump destinations to preserve program
correctness.

4.5. State Capture Algorithm
a. Once the control is transferred to the state capture

mechanism function, the following tasks are performed
initially:
1. The point of equivalence at which (and the

interrupted function within which) capture has
been initiated is noted.

2. The return address of the current activation record is
replaced by the address of the saving epilogue of
the interrupted function. Finally, a return is
performed so that control is passed to that saving
epilogue.

b. The saving epilogue performs the following tasks:
1. Save the local variables, actual parameters present

in the current activation record.
2. Identify the caller of the current function using the

return address available in the current activation
record. The point of equivalence preceding the
point of execution of the calling function is noted.

3. The return address of the current activation record is
replaced by the address of the saving epilogue of
the caller function. Next, a return is performed so
that control is passed to the caller’s saving
epilogue.

c. Step b is repeated until all activations are saved.
d. When the bottom of the activation history stack is

reached, the epilogue also performs the saving of the
static (global) data and the heap data.

While saving the activation, static or heap data, the

state of a pointer is captured according to its logical
meaning (i.e., the data object or code point to which it is
pointing) rather than its value indicating the physical
address [8, 9, 10]. In order to identify the data object being
pointed, given a physical address, we require one of the
following:
i. Compiler-support in terms of information about the

positions of globals within the global data area and the
activation record structures of the various functions, as
well as run-time support only for registering heap data.

ii. Run-time support for registering local, global and heap
data.

For all other data types, the data is copied verbatim into the
checkpoint.

5

4.6 State Recovery Algorithm
Once a new process has been created on the

destination machine, the following steps are carried out to
perform the process state recovery:
a. A jump instruction with destination as the corresp-

onding restoring epilogue is placed at the entry point
of each function present in the program.

b. When the first activation record (for the base function)
is created, the corresponding epilogue will restore the
static (global) and heap data from the checkpoint file.

c. The restoring epilogue performs the following tasks:
1. Restore the local variables and actual parameters

into the current activation record.
2. If there are no more activations to be restored:

The original entry point of each function is
restored back.

3. A jump takes place to the point in the destination’s
object code corresponding to the point of
equivalence (at which this function activation’s
execution was frozen) noted during state capture.

d. Step c is repeated until all activations have been
restored. This happens automatically since the point to
which the jump takes place will contain a call
instruction until all the activation records have been
restored. (Once all the activations have been restored,
the original function entry points are restored and
control is transferred to the point of equivalence at
which the state capture had been initiated).

e. The process finally resumes normal execution.

Again, while restoring the activation, static or heap
data, the state of a pointer is mapped back from its logical
meaning to its value indicating the physical address on this
machine. For all other data types, the source data copied
into the checkpoint is now translated accordingly into the
destination architecture data format by using data format
mapping functions, if necessary. This is in accordance with
the “receiver makes right” policy. This policy has the
advantage that only one translation needs to be done (by
the receiver) and there is no need for any intermediate data
format representation. Also, if the state is to be recovered
on the same architecture as the source, there is no need for
any translation at all.

5. Conclusion

This paper presents an approach to process state
capture and recovery in heterogeneous computing systems
that achieves minimum performance overhead during
normal execution of the process. The overhead incurred is
limited to the performance enhancements lost because of
disallowing machine-dependent optimizations across
enabled points of equivalence, and the run-time support
required for the registration of dynamic data.

The solution presented, being poll-free, is suitable

even for an application desiring minimal latency as it can
afford to effectively enable all potential points of
equivalence present in a computation. Also, high-

performance computing applications can perform
significantly better due to the reduced performance
overhead, especially within critical loops.

REFERENCES
[1] Ramon Lawrence, “A Survey of Process Migration

Mechanisms,” Student Report for Course Project 1997,
University of Manitoba.

[2] Adam J. Ferrari, Stephen J. Chapin, and Andrew S.
Grimshaw, “Process Introspection: A Heterogeneous
Checkpoint / Restart Mechanism Based on Automatic
Code Modification,” Technical Report CS-97-05,
Department of Computer Science, University of
Virginia.

[3] M.J. Litzkow, M. Livny, and M.W. Mutka, “Condor—
A Hunter of Idle Workstations,” in Proceedings of the
Eighth International Conference on Distributed
Computing Systems, pp. 104-111, 1988.

[4] Adam John Ferrari, “Process State Capture and
Recovery in High-Performance Heterogeneous
Distributed Computing Systems,” Ph.D. Thesis,
Department of Computer Science, University of
Virginia, January 1998.

[5] David G. Von Bank, Charles M. Shub, and Robert W.
Sebesta, “A Unified Model of Pointwise Equivalence of
Procedural Computations,” ACM Transactions on
Programming Languages and Systems, Vol. 16, No. 6,
November 1994, Pages 1842-1874.

[6] Holly J. Dail, “Checkpointing and Migration in
Heterogeneous, Distributed Systems,” Final Project
Paper submitted for Keith Marzullo’s Graduate
Distributed Systems Course at the University of
California at San Diego.

[7] Peter. W. Smith, “The Possibilities and Limitations of
Heterogeneous Process Migration,” Ph.D. Thesis,
Department of Computer Science, The University of
British Columbia, October 1997.

[8] Kasidit Chanchio and Xian-He Sun, “Memory Space
Representation for Heterogeneous Network Process
Migration,” 12th International Parallel Processing
Symposium, March 1998.

[9] Kasidit Chanchio and Xian-He Sun, “Data Collection
and Restoration for Heterogeneous Process
Migration,” Technical Report 97-017, Department of
Computer Science, Louisiana State University, 1997.

[10] Xian-He Sun, V. K. Niak, and Kasidit Chanchio, “A
Coordinated Approach for Process Migration in
Heterogeneous Environments,” SIAM Parallel
Processing Conference, 1999.

[11] Strumpen. V, Ramkumar. B, “Portable Checkpointing
and Recovery in Heterogeneous Environments,”
Technical Report 96-6-1, Department of Electrical and
Computer Engineering, University of Iowa, June 1996.

[12] Balkrishna Ramkumar and Volker Strumpen,
“Portable Checkpointing for Heterogeneous
Architectures,”' Proceedings of the 27th International
Symposium on Fault-Tolerant Computing - Digest of
Papers, Seattle, WA, pages 58-67, June 1997.

